Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Sci Rep ; 14(1): 9461, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658587

Average windward area is an important index for calculating the trajectory, velocity attenuation and terminal effect of explosive fragments. In order to solve the problems that existing theoretical method cannot calculate windward area of irregular fragment and experiment method is not convenient for automatic calculation and has low accuracy, a Monte Carlo subdivision projection simulation algorithm is proposed. The average windward area of arbitrary shaped fragments can be obtained with coordinate translation, random rotation, plane projection, convex-hull triangulation, concave boundary searching and sorting with maximum edge length constraint, subdivision area calculation, and averaging by thousands of cycles. Results show that projection area obtained by the subdivision projection algorithm is basically the same as that obtained by software method of computer aided design. Moreover, the maximum calculation error of the algorithm is less than 7%, and its accuracy is much higher than that of the equivalent ellipsoid method. The average windward area calculated by the Monte Carlo subdivision projection simulation algorithm is consistent with theoretical formula for prefabricated fragments, and the error is less than 3%. The convergence and accuracy of the Monte Carlo subdivision projection algorithm are better than those of the icosahedral uniform orientation method.

2.
Clin Transl Sci ; 17(4): e13787, 2024 04.
Article En | MEDLINE | ID: mdl-38558535

The purpose of this study was to evaluate the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of frunexian (formerly known as EP-7041 and HSK36273) injection, a small molecule inhibitor of activated coagulation factor XI (FXIa), in healthy Chinese adult volunteers. This study was a randomized, placebo- and positive-controlled, sequential, ascending-dose (0.3/0.6/1.0/1.5/2.25 mg/kg/h) study of 5-day continuous intravenous infusions of frunexian. Frunexian administration exhibited an acceptable safety profile with no bleeding events. Steady state was rapidly reached with a median time ranging from 1.02 to 1.50 h. The mean half-life ranged from 1.15 to 1.43 h. Frunexian plasma concentration at a steady state and area under the concentration-time curve exhibited dose-proportional increases. The dose-escalation study of frunexian demonstrated its progressively enhanced capacities to prolong activated partial thromboplastin time (aPTT) and inhibit FXIa activity. The correlations between PK and PD biomarkers (aPTT/baseline and FXI clotting activity/baseline) were described by the two Emax models, with the EC50 values of 8940 and 1300 ng/mL, respectively. Frunexian exhibits good safety and PK/PD properties, suggesting it is a promising candidate for anticoagulant drug.


Anticoagulants , Blood Coagulation , Adult , Humans , Partial Thromboplastin Time , Healthy Volunteers , China , Double-Blind Method , Dose-Response Relationship, Drug
3.
Acta Pharmacol Sin ; 45(5): 926-944, 2024 May.
Article En | MEDLINE | ID: mdl-38286832

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.


Amyotrophic Lateral Sclerosis , Astrocytes , Loratadine , Loratadine/analogs & derivatives , Mice, Transgenic , Spinal Cord , Superoxide Dismutase-1 , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/metabolism , Mice , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Loratadine/pharmacology , Loratadine/therapeutic use , Humans , Receptor, Serotonin, 5-HT2A/metabolism , Disease Models, Animal , Male , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Mice, Inbred C57BL
4.
Acta Pharmacol Sin ; 44(12): 2388-2403, 2023 Dec.
Article En | MEDLINE | ID: mdl-37580494

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, which has yet no curable medication. Neuroinflammation and mitochondrial dysfunction are tightly linked to DPN pathology. G-protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic ß-cells, but also in spinal dorsal horn and dorsal root ganglion (DRG) neurons, regulating neuropathic pain. We previously have reported that vincamine (Vin), a monoterpenoid indole alkaloid extracted from Madagascar periwinkle, is a GPR40 agonist. In this study, we evaluated the therapeutic potential of Vin in ameliorating the DPN-like pathology in diabetic mice. Both STZ-induced type 1 (T1DM) and db/db type 2 diabetic (T2DM) mice were used to establish late-stage DPN model (DPN mice), which were administered Vin (30 mg·kg-1·d-1, i.p.) for 4 weeks. We showed that Vin administration did not lower blood glucose levels, but significantly ameliorated neurological dysfunctions in DPN mice. Vin administration improved the blood flow velocities and blood perfusion areas of foot pads and sciatic nerve tissues in DPN mice. We demonstrated that Vin administration protected against sciatic nerve myelin sheath injury and ameliorated foot skin intraepidermal nerve fiber (IENF) density impairment in DPN mice. Moreover, Vin suppressed NLRP3 inflammasome activation through either ß-Arrestin2 or ß-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through CaMKKß/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling in the sciatic nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells. All the above-mentioned beneficial effects of Vin were abolished by GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. Together, these results support that pharmacological activation of GPR40 as a promising therapeutic strategy for DPN and highlight the potential of Vin in the treatment of this disease.


Diabetes Mellitus, Experimental , Diabetic Neuropathies , Vincamine , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Monoterpenes/chemistry , Monoterpenes/pharmacology , Receptors, G-Protein-Coupled , Sciatic Nerve/pathology , Signal Transduction , Vincamine/pharmacology , Vincamine/therapeutic use
5.
Basic Clin Pharmacol Toxicol ; 133(5): 592-602, 2023 Nov.
Article En | MEDLINE | ID: mdl-37635270

Drugs for acute postoperative pain and breakthrough cancer pain are still urgent in clinical. LPM3480392 is a G-protein-biased ligand at the µ-opioid receptor and showed potent analgesia in nonclinical studies. Two phase I studies of LPM3480392 were conducted in healthy Chinese male volunteers to explore its tolerability, pharmacokinetics and pharmacodynamics under single ascending doses (Study I 0.1-3.0 mg, 30 min) and different infusion times (Study II, 0.6-1.0 mg, 2-15 min). There was one serious adverse event (AE) observed in Study II, and the rest AEs were mild or moderate in severity and resolved by the end of the study. Plasma LPM3480392 maximum concentration (Cmax ) (under lower infusion rate) and area under the plasma concentration-time curve (AUCs) were generally increased with dose. Moreover, LPM3480392 at a dose of 0.6 mg under a 2 min infusion rate elicited effective analgesia as the peak effect within 10-30 min, which was measured by cold pain test and pupillometry. These findings suggest that LPM3480392 could be a potential treatment for acute pain management.

6.
Huan Jing Ke Xue ; 44(7): 3872-3880, 2023 Jul 08.
Article Zh | MEDLINE | ID: mdl-37438286

In order to explore the impact of different anthropogenic disturbances on the ecological environment of natural rivers, the bacterial community in the channel sediments of the Jialing River was taken as the research object, and the high-throughput sequencing technique was used to analyze the community composition and functional changes of bacteria in the channel sediments of rivers with engineering disturbance, tributary disturbance, sand mining disturbance, reclamation disturbance, and undisturbed section. The results showed that there were significant differences in the physical and chemical properties of channel sediments and bacterial community diversity in different disturbance sections of the Jialing River (P<0.05). The undisturbed section had the highest bacterial community diversity, whereas the sand mining disturbance and undisturbed section had the highest bacterial community uniformity, and tributary disturbance and reclamation disturbance both resulted in a decrease in bacterial community diversity and uniformity. The effect of engineering disturbance on bacterial community composition was significantly different from that of the other four disturbance sections. The dominant bacterial phyla were Proteobacteria, Actinobacteriota, Acidobacteriota, and Chloroflexi, and the dominant bacterial classes were γ-Proteobacteria, α-Proteobacteria, and Vicinamibacteria. Sand mining disturbance led to the increase in Actinobacteria, and engineering disturbance promoted the increase in Acidobacteria. Moisture content, total organic carbon, total nitrogen, and total phosphorus were the main environmental factors affecting the changes in sediment microbial communities. The bacterial communities mainly involved four categories of primary metabolic functions, including metabolism, genetic information processing, environmental information processing, and cellular processes, and 18 categories of secondary metabolic functions, such as global and overview maps, carbohydrate metabolism, amino acid metabolism, cofactor and vitamin metabolism, and energy metabolism. Human interference led to significant changes in energy metabolism, cofactor and vitamin metabolism, nucleotide metabolism, replication and repair, and translation (P<0.05). In conclusion, anthropogenic disturbance led to the mutation of bacterial community diversity and function, which destroyed the stability of the microbial community structure in Jialing River sediments.


Rivers , Sand , Humans , Bacteria/genetics , Acidobacteria , Vitamins
7.
Front Chem ; 10: 860398, 2022.
Article En | MEDLINE | ID: mdl-35433628

New multilayer 3D chiral molecules have been designed and synthesized asymmetrically through the strategy of center-to-multilayer folding chirality control and double Suzuki couplings. Individual diastereoisomers were readily obtained and separated via flash column chromatography. The key diastereoisomer was further converted into corresponding enantiomers. These enantiomers possess electron-deficient aromatic bridges layered with top and bottom aromatic scaffolds. X-ray structural analysis has unambiguously confirmed the configuration, and intermolecular packing results in regular planar patterns in solid crystals. The synthesis was achieved in a total of ten steps starting from commercially available starting materials.

8.
Acta Pharmacol Sin ; 43(9): 2226-2241, 2022 Sep.
Article En | MEDLINE | ID: mdl-35091686

Clinical evidence shows that postmenpausal women are almost twice as likely to develop Alzheimer's disease (AD) as men of the same age, and estrogen is closely related to the occurrence of AD. Estrogen receptor (ER) α is mainly expressed in the mammary gland and other reproductive organs like uterus while ERß is largely distributed in the hippocampus and cardiovascular system, suggesting that ERß selective agonist is a valuable drug against neurodegenerative diseases with low tendency in inducing cancers of breast and other reproductive organs. In this study we identified a natural product patchouli alcohol (PTA) as a selective ERß agonist which improved the cognitive defects in female APP/PS1 mice, and explore the underlying mechanisms. Six-month-old female APP/PS1 mice were administered PTA (20, 40 mg · kg-1 · d-1, i.g.) for 90 days. We first demonstrated that PTA bound to ERß with a dissociation constant (KD) of 288.9 ± 35.14 nM in microscale thermophoresis. Then we showed that PTA administration dose-dependently ameliorated cognitive defects evaluated in Morris water maze and Y-maze testes. Furthermore, PTA administration reduced amyloid plaque deposition in the hippocampus by promoting microglial phagocytosis; PTA administration improved synaptic integrity through enhancing BDNF/TrkB/CREB signaling, ameliorated oxidative stress by Catalase level, and regulated Bcl-2 family proteins in the hippocampus. The therapeutic effects of PTA were also observed in vitro: PTA (5, 10, 20 µM) dose-dependently increased phagocytosis of o-FAM-Aß42 in primary microglia and BV2 cells through enhancing ERß/TLR4 signaling; PTA treatment ameliorated o-Aß25-35-induced reduction of synapse-related proteins VAMP2 and PSD95 in primary neurons through enhancing ERß/BDNF/TrkB/CREB pathways; PTA treatment alleviated o-Aß25-35-induced oxidative stress in primary neurons through targeting ERß and increasing Catalase expression. Together, this study has addressed the efficacy of selective ERß agonist in the amelioration of AD and highlighted the potential of PTA as a drug lead compound against the disease.


Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Catalase/metabolism , Disease Models, Animal , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Female , Hippocampus/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/drug therapy , Presenilin-1 , Sesquiterpenes
9.
Chemistry ; 27(30): 7977, 2021 May 26.
Article En | MEDLINE | ID: mdl-33931916

Invited for the cover of this issue is Guigen Li and co-workers at Texas Tech University and Nanjing University. The cover artwork shows that chirality phenomena exists in the universe and in nature, including at micro and molecular levels. Read the full text of the article at 10.1002/chem.202100700.

10.
BMC Infect Dis ; 21(1): 336, 2021 Apr 10.
Article En | MEDLINE | ID: mdl-33838648

BACKGROUND: Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis (MTB). An estimated 1.7 billion people worldwide are infected with Mycobacterium tuberculosis (LTBI) during the incubation period without any obvious symptoms. Because of MTB's high infection and mortality rates, there is an urgent need to develop a fast, portable, and sensitive diagnostic technology for its detection. METHODS: We included research from PubMed, Cochrane Library, Web of Science, and Embase and extracted the data. MetaDisc and STATA were used to build forest plots, Deek's funnel plot, Fagan plot, and bivariate boxplot for analysis. RESULTS: Forty-six articles were analyzed, the results of which are as follows: sensitivity and specificity were 0.92 (0.91-0.93) and 0.95 (0.94-0.95) respectively. The NLR and PLR were 0.04 (95% CI 0.03-0.07) and 25.32 (95% CI 12.38-51.78) respectively. DOR was 639.60 (243.04-1683.18). The area under the SROC curve (AUC) was 0.99. CONCLUSIONS: MPT64 exhibits good diagnostic efficiency for MTB. There is no obvious heterogeneity between the three commercial kits.


Antigens, Bacterial/immunology , Mycobacterium tuberculosis , Reagent Kits, Diagnostic , Tuberculosis/microbiology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoassay/methods , Mycobacterium tuberculosis/isolation & purification , Sensitivity and Specificity , Tuberculosis/diagnosis
11.
Chemistry ; 27(30): 8013-8020, 2021 May 26.
Article En | MEDLINE | ID: mdl-33830589

The first asymmetric catalytic approach to multilayer 3D chirality has been achieved by using Suzuki-Miyaura cross-couplings. New chiral catalysts were designed and screened under various catalytic systems that proved chiral amide-phosphines to be more efficient ligands than other candidates. The multilayer 3D framework was unambiguously determined by X-ray structural analysis showing a parallel pattern of three layers consisting of top, middle and bottom aromatic rings. The X-ray structure of a catalyst complex, dichloride complex of Pd-phosphine amide, was obtained revealing an interesting asymmetric environment nearby the Pd metal center. Three rings of multilayer 3D products can be readily changed by varying aromatic ring-anchored starting materials. The resulting multilayer products displayed strong luminescence under UV irradiation and strong aggregation-induced emission (AIE). In the future, this work would benefit not only the field of asymmetric synthesis but also materials science, in particular polarized organic electronics, optoelectronics and photovoltaics.

12.
Neurosci Lett ; 742: 135515, 2021 01 18.
Article En | MEDLINE | ID: mdl-33227370

Bipolar disorder (BD) is a debilitating mental disorder with complex clinical manifestations and low diagnostic accuracy. Depressive episodes are most common in the course of BD with high comorbidity and suicide rates, which present greater clinical challenges than mania and hypomania episodes. However, there are no objective biomarkers for bipolar depression. The aim of this study was to detect urinary metabolite biomarkers that could be useful for the diagnosis of bipolar depression. Nuclear magnetic resonance spectroscopy was used to profile urine samples of patients with bipolar depression (n = 37) and healthy volunteers (n = 48). Data were analyzed using Orthogonal Partial Least Square Discriminant Analysis and t-test. Differential metabolites were identified (VIP > 1 and p < 0.05), and further analyzed using Metabo Analyst 3.0 to identify associated metabolic pathways. In total, we identified seven metabolites differentially expressed in patients with BD and healthy controls. Compared with healthy group, the levels of betaine, glycerol, hippuric acid, indole sulfate, trimethylamine oxide, and urea in urine samples of BD patients were significantly higher, while the level of inositol was significantly lower. Most of these small molecules are related to lipid metabolism and gut microbiota metabolism. These differential metabolites could provide critical insight into the pathological mechanisms of bipolar depression. The results of this study provide a meaningful reference for similar and further studies in the future.


Bipolar Disorder/diagnosis , Bipolar Disorder/urine , Metabolomics/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Adolescent , Adult , Betaine/urine , Biomarkers/metabolism , Biomarkers/urine , Female , Hippurates/urine , Humans , Male , Middle Aged , Young Adult
13.
Environ Res ; 190: 109982, 2020 11.
Article En | MEDLINE | ID: mdl-32745749

Waterborne pathogens and their associated diseases are major threats to public health, and surveillance of pathogens and identification of the sources of pollution are imperative for preventing infections. However, simultaneously quantitative detection of multiple pathogens and pollution sources in water environments is the major challenge. In this study, we developed and validated a highly sensitive (mostly >80%) and highly specific (>99%) high-throughput quantitative PCR (HT-qPCR) approach, which could simultaneously quantify 68 marker genes of 33 human pathogens and 23 fecal markers of 10 hosts. The HT-qPCR approach was then successfully used to investigate pathogens and fecal pollution in marine recreational water samples of Xiamen, China. Totally, seven pathogenic marker genes were found in 13 beach bathing waters, which targeted Acanthamoeba spp., Clostridium perfringens, enteropathogenic Escherichia coli, Klebsiella pneumoniae, Vibrio cholera/V. parahaemolyticus and Legionella spp.. Fecal markers from human and dog were the most frequently detected, indicating human and dog feces were the main contamination in the recreational waters. Nanopore sequencing of full-length 16S rRNA gene revealed that 28 potential human pathogens were detected and electrical conductivity, salinity, oxidation-reduction potential and dissolved oxygen were significantly correlated with the variation in bacterial community. Our results demonstrated that HT-qPCR approach had the potential rapid quantification of microbial contamination, providing useful data for assessment of microbial pathogen associated health risk and development of management practices to protect human health.


Bathing Beaches , Water Microbiology , Animals , China , Dogs , Environmental Monitoring , Feces , Humans , RNA, Ribosomal, 16S/genetics , Water , Water Pollution/analysis
14.
Ying Yong Sheng Tai Xue Bao ; 31(2): 474-482, 2020 Feb.
Article Zh | MEDLINE | ID: mdl-32476340

Maize stalk mulching is a conservation tillage method that has been currently promoted in northeastern China Plain. Remote sensing estimation of regional crop residue cover (CRC) can quickly obtain the information of straw mulching in a large area, which plays an important role in monitoring and popularizing the work of straw mulching. In this study, the normalized difference til-lage index (NDTI), simple tillage index (STI), normalized difference residue index (NDRI), and normalized difference index 7 (NDI7) were extracted from Sentinel-2A image and used to establish a linear regression model for CRC and spectral indices in Lishu County of Jilin Province. The results showed that soils had strong spatial heterogeneity in the study area, which would lead to a significant impact on the spectral index regression model. Using soil texture classification (zoning) to establish regression model could improve the inversion accuracy. Soil spatial heterogeneity would increase the estimation error of the model. The four spectral indices had a strong correlation with CRC, among which the NDTI and STI models performed better. The zonal linear regression model based on NDTI and STI verified that R2 was 0.84 and RMSE was 13.3%, which was better than the non-zonal model (R2 was 0.75 and RMSE was 16.5%) and thus effectively improved the inversion accuracy.


Soil , Zea mays , China , Remote Sensing Technology
15.
ACS Appl Mater Interfaces ; 12(13): 15573-15578, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32155041

The coordination interactions between transition-metal ions (Cu2+, Ag+) and sulfur atoms on ultrathin two-dimensional (2D) nanosheets of spin-crossover (SCO) metal-organic frameworks {[Fe(1,3-bpp)2(NCS)2]2}n (1,3-bpp = 1,3-di(4-pyridyl)propane), which constructed the ultrathin 2D nanosheets into three-dimensional (3D) nanoparticles, have made a profound effect on the SCO performance. Compared with 2D nanosheets, both the intraligand π-π* transition band and the metal-to-ligand charge transition band from the d(Fe) + π(NCS) to π*(1,3-bpp), for the 3D nanoparticles, have shown dramatic blue-shifts; meanwhile, the d-d transition band for the high-spin (HS) state Fe(II) ions has been generated, suggesting significantly the influence of 3D assemble-caused dimensional changes on the solid-state SCO performance of ultrathin 2D nanosheets. More importantly, by loading on the ytterbium ion (Yb3+)-sensitized hexagonal phase upconverting nanoparticles in the aqueous colloidal suspension, the near infrared (NIR) light (980 nm) triggered HS (high spin) to LS (low spin) state transitions have been observed, demonstrating the achievement of challenging target of NIR light-triggered molecular conversion under environment conditions.

16.
Int J Biol Macromol ; 151: 376-383, 2020 May 15.
Article En | MEDLINE | ID: mdl-32084467

Natural products belonging to a class of generally-recognized-as-safe biomaterials have exceptional biocompatibility and biodegradability and can be used as delivery vehicles for a variety of functional foods. Adlay (Coix lacryma-jobi), is a nutritious food, rich in various bioactive ingredients. Coix seed oil extract (CSO) is also bioactive but it is sensitive to oxidation. In this study, a bioactive delivery system based on homologous polysaccharides and proteins was developed to deliver coix seed oil. The results show that the CSO nanoparticles have high encapsulation efficiency, narrow particle size distribution, and good stability. Moreover, the fusion of the nanoparticles with the membrane enabled the transport of CSO through the Caco-2 cell monolayer and improved the intestinal permeability. These findings could provide useful information for designing homologous polysaccharide and protein-based delivery systems to increase the bioavailability of lipophilic nutraceuticals in the food industry.


Coix/chemistry , Plant Oils/chemistry , Polysaccharides/chemistry , Proteins/chemistry , Seeds/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Compounding , Drug Delivery Systems , Humans , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Plant Oils/pharmacology , Polysaccharides/pharmacology
17.
Chemosphere ; 242: 125207, 2020 Mar.
Article En | MEDLINE | ID: mdl-31675591

Landfills leachate contained diverse antibiotic resistance genes (ARGs). Treated landfill leachate effluent could enter into the downstream environments, leading to the dissemination of ARGs, which might pose a health risk to public. Here, we used high-throughput qPCR to characterize the resistome and 16S rRNA-based Illumina sequencing to analyze the bacterial community in a leachate treatment plant and the river near the landfill. A total of 91 ARGs and 5 mobile genetic elements were detected. Leachate treatment process significantly changed the profiles of resistome and bacterial community structures. Similar bacterial community structure and ARG profiles were detected between effluent and downstream river, which were both dominated by multidrug and beta-lactams resistance genes and harbored higher ARG relative abundance than that in upstream river. In particular, seven ARGs were detected both in effluent and downstream river samples but not detected in upstream river, including genes encoding resistance to vancomycin (vanXD and vanSB) and carbapenem (cphA and blaGES), which implied the effects of the effluent on its receiving river. This study highlights the risk of discharge of processed landfill leachate in dissemination of antibiotic resistance determinants to the environments, and suggests an urgent need for surveillance of ARGs and development of techniques to mitigate the risk.


Drug Resistance, Microbial/genetics , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Drug Resistance, Microbial/drug effects , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , Waste Disposal Facilities , Water Pollutants, Chemical/pharmacology
18.
Rev Sci Instrum ; 90(8): 085104, 2019 Aug.
Article En | MEDLINE | ID: mdl-31472658

On the basis of the actively controlled multiple-fan wind tunnel we designed, this paper proposes a latticed mode-based control strategy for the fan array. The so-called latticed mode is the overall topology of the working fans. In order to investigate the simulation ability of the latticed mode, several latticed modes are designed to analyze the temporal and spatial properties of generated wind fields. Airflow data under different latticed modes are measured using nine two-dimensional anemometers, and then, statistical indicators of wind speed and wind direction, as well as the spatial uniformity and complexity of generated wind fields, are calculated to analyze the characteristics of wind records. The results indicate that the distribution of active fans in the latticed mode has significant influence on the statistical properties and spatial evolutions of wind speed and direction. Besides, the latticed modes can regulate the spatial uniformity and complexity of the wind fields. The latticed modes with a high clustering degree of active fans can generate wind fields with low spatial uniformity and high complexity. In addition to the fan voltage and the rotation angle of swivel plates, the proposed latticed mode provides more possibilities for wind field simulation.

19.
Chemistry ; 25(37): 8805-8812, 2019 Jul 02.
Article En | MEDLINE | ID: mdl-31054168

Precise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO4 -H2 O-OH(TIMDP)-N(TIMDP) hydrogen-bonding bridge. At the ground state, the ICT effect is dominant, giving birth to crystals of TIMDP. Upon external stimuli (e.g., UV light irradiation, electro field), the excited state is achieved, which weakens the ICT effect, and significantly promotes the ESPT effect along the hydrogen-bonding bridge, resulting in crystals of [HTIMDP]+ ⋅[H2 O]⋅[ClO4 ]- . As a consequence, the mechanisms of the ESPT can be investigated, which distorted the D-π-A molecular architecture, tuned the emission color with the largest Stokes shift of 242 nm, and finally, high photoluminescence quantum yields (12 %) and long fluorescence lifetimes (8.6 µs) have achieved. These results not only provide new insight into ESPT mechanisms, but also open a new avenue for the design of efficient ESPT emitters.

20.
Acta Pharmacol Sin ; 40(10): 1279-1291, 2019 Oct.
Article En | MEDLINE | ID: mdl-31000769

The pathogenesis of Alzheimer's disease (AD) is characterized by both accumulation of ß-amyloid (Aß) plaque and formation of neurofibrillary tangles in the brain. Recent evidence shows that autophagy activation may potently promote intracellular Aß clearance. Thus targeting autophagy becomes a promising strategy for discovery of drug leads against AD. In the present study, we established a platform to discover autophagy stimulator and screened the lab in-house FDA-approved drug library. We found that anti-parasitic drug nitazoxanide (NTZ) was an autophagy activator and could efficiently improve learning and memory impairments in APP/PS1 transgenic mice. In BV2 cells and primary cortical astrocytes, NTZ stimulated autophagy and promoted Aß clearance by inhibiting both PI3K/AKT/mTOR/ULK1 and NQO1/mTOR/ULK1 signaling pathways; NTZ treatment attenuated LPS-induced inflammation by inhibiting PI3K/AKT/IκB/NFκB signaling. In SH-SY5Y cells and primary cortical neurons, NTZ treatment restrained tau hyperphosphorylation through inhibition of PI3K/AKT/GSK3ß pathway. The beneficial effects and related signaling mechanisms from the in vitro studies were also observed in APP/PS1 transgenic mice following administration of NTZ (90 mg·kg-1·d-1, ig) for 100 days. Furthermore, NTZ administration decreased Aß level and senile plaque formation in the hippocampus and cerebral cortex of APP/PS1 transgenic mice, and improved learning and memory impairments in Morris water maze assay. In conclusion, our results highlight the potential of NTZ in the treatment of AD.


Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Antiparasitic Agents/pharmacology , Disease Models, Animal , Learning/drug effects , Memory Disorders/drug therapy , Thiazoles/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cells, Cultured , Humans , Memory Disorders/metabolism , Mice , Nitro Compounds
...